Disanapsis pulmonar e hiperrespuesta bronquial en el asma

Miguel Perpiñá Tordera

Resumen


La hiperrespuesta bronquial (HB) es el estrechamiento excesivo y súbito de la luz aérea ante estímulos de naturaleza diversa que por lo común solo provocan una reducción escasa o nula en el calibre del tracto respiratorio. La mayoría de los autores coinciden a la hora de afirmar que su patogenia está ligada a la inflamación que experimenta la pared bronquial durante el curso de la enfermedad y señalan tres mecanismos claves: la participación de determinantes mecánicos, la disfunción del músculo liso de la vía aérea (MLVA) y la pérdida de componente(s) limitante(s) de la contractilidad del MLVA. Sin embargo, en los últimos años diversos investigadores han llamado la atención sobre la necesidad de considerar aquí también otro aspecto: la disanapsis pulmonar. Es decir, la incongruencia entre un (más rápido) crecimiento del volumen pulmonar y la longitud de las vías aéreas y un (más lento) aumento del calibre de estas últimas. Varios trabajos han demostrado fuera de toda duda que las desigualdades en la relación vía aérea/parénquima correlacionan con el grado de HB asmática y, bajo determinadas condiciones, constituye un factor que favorece el riesgo de padecer asma. La presente revisión recoge la información actualizada más destacable que liga disanapsis, HB y asma, con una especial atención a los estudios epidemiológicos realizados al respecto. 


Texto completo:

PDF HTML

Referencias


Boushey HA, Holtzman MJ, Sheller JR, Nadel JA. Bronchial

hyperreactivity. Am Rev Respir Dis. 1980;121:389–413.

Perpiñá Tordera M. Hiperrespuesta bronquial en el asma.

Patogenia y medición. Arch Bronconeumol. 2004;40 Suppl

:8–13.

Perpiñá M, Pellicer C, De Diego A, Compte L, Macián V.

Diagnostic value of the bronchial provocation test with

methacholine in asthma. A Bayesian analisis approach. Chest.

;104:149–54.

Galera R, Casitas R, Martínez-Cerón E, Romero D, García-Río

F. Does airway hyperresponsiveness monitoring lead to improved

asthma control? Clin Exp Allergy. 2015;45:1396–405.

Perpiñá Tordera M, García Río F, Álvarez Gutiérrez FJ,

Cisneros Serrano C, Compte Torrero L, Entrenas Costa LM,

et al. Normativa sobre el estudio de la hiperrespuesta bronquial

inespecífica en el asma. Arch Bronconeumol. 2013;49:432–46.

Coates AL, Wanger J, Cockcroft DW, Culver BH;

Bronchoprovocation Testing Task Force. ERS technical

standard on bronchial challenge testing: general considerations

and performance of methacholine challenge tests. Eur Respir

J. 2017;49:1601526.

Cockroft DW, Davis BE. Mechanisms of airway

hyperresponsiveness. J Allergy Clin Immunol. 2006;118:551–9.

Perpiñá Tordera M. Hiperrespuesta bronquial inespecífica.

En: Plaza Moral V, ed. Inflamometría en asma, EPOC y

rinitis. Barcelona, Viguera Editores. 2012:73–98.

O’Byrne PM, Inman MD. Airway hyperresponsiveness.

Chest. 2003;123:411S–416S.

Wang L, McParland DE, Paré PD. The functional consequences

of structural changes in the airways. Implications for airway

hyperresponsiveness in asthma. Chest. 2003;123:356S–362S.

Bossé Y, Chapman DG, Paré PD, King GG, Salome

CM. A “Good” muscle in a “Bad” environment: The

importance of airway smooth muscle force adaptation to

airway hyperresponsiveness. Respir Physiol Neurobiol.

;179:269–75.

Chapman DG, Irvin CG. Mechanisms of airway

hyperresponsiveness in asthma: The past, present and yet to

come. Clin Exp Allergy. 2015;45:706–19.

An SS, Mitzner W, Tang WY, Ahn K, Yoon AR, Huang J, et al.

An inflammation-independent contraction mechanophenotype

of airway smooth muscle in asthma. J Allergy Clin Immunol.

;138:294–7.

Green MM, Mead J, Turner JM. Variability of maximum

expiratory flow-volume curves. J Appl Physiol. 1974;37:67–74.

García-Río F, Calle M, Burgos F, Casan P, Del Campo F,

Gáldiz JB, et al. Normativa SEPAR. Espirometría. Arch

Bronconeumol. 2013;49:388–401.

Mead J. Dysanapsis in normal lungs assessed by the relationship

between maximal flow, static recoil, and vital capacity. Am

Rev Respir Dis. 1980;121:339–42.

Turner JM, Mead J, Wohl ME. Elasticity of human lungs in

relation to age. J Appl Physiol. 1968;25:664–71.

Tager IB, Weiss ST, Muñoz A, Welty C, Speizer FE.

Determinants of response to eucapneic hyperventilation with

cold air in a population-based study. Am Rev Respir Dis.

;134:502–8.

Martin TR, Castile RG, Fredberg JJ, Wohl ME, Mead J.

Airway size is related to sex but not lung size in normal adults.

J Appl Physiol. 1987;63:2042–7.

Brooks LJ, Byard PJ, Helms RC, Fouke JM, Strohl KP.

Relationship between lung volume and tracheal area as assessed

by acoustic reflection. J Appl Physiol. 1988;64:1050–4.

Sheel AW, Guenette JA, Yuan R, Holy L, Mayo JR,

McWilliams AM, et al. Evidence for dysanapsis using

computed tomographic imaging of the airways in older exsmokers.

J Appl Physiol. 2009;107:1622–8.

Sheel AW, Dominelli PB, Molgat-Seon Y. Revisiting

dysanapsis: sex-based differences in airways and the mechanics

of breathing during exercise. Exp Physiol. 2016;101:213–8.

Raghavan D, Jain R. Increasing awareness of sex differences in

airway diseases. Respirology. 2016;21:449–59.

Lieberman E, Torday J, Barbieri R, Cohen A, Van Vunakis H,

Weiss ST. Association of intrauterine cigarette smoke exposure

with indices of fetal lung maturation. Obstet Gynecol.

;79:564–70.

Llapur CJ, Martínez MR, Grassino PT, Stok A, Altieri HH,

Bonilla F, et al. Chronic hypoxia accentuates dysanaptic lung

growth. Am J Respir Crit Care Med. 2016;194:327–32.

Zosky GR, Berry LJ, Elliot JG, James AL, Gorman S, Hart

PH. Vitamin D deficiency causes deficits in lung function

and alters lung structure. Am J Respir Crit Care Med.

;183:1336–43.

Zosky GR, Hart PH, Whitehouse AJO, Kusel MM, Ang

W, Foong RE, et al. Vitamin D deficiency at 16 to weeks’

gestation is associated with impaired lung function and

asthma at 6 years of age. Ann Am Thorac Soc. 2014;11:571–7.

Forno E, Weiner DJ, Mullen J, Sawicki G, Kurland G,

Han YY, et al. Obesity and airway dysanapsis in children

with and without asthma. Am J Respir Crit Care Med.

;191:314–23.

Urrutia I, Capelastegui A, Quintana JM, Muniozguren

N, Payo F, Martínez Moratalla J, et al. Asociación entre el

cociente FEF25-75%/FVC y la hiperreactividad bronquial. Arch

Bronconeumol. 2004;40:397–402.

Litonjua AA, Sparrow D, Weiss ST. The FEF25-75/FVC

ratio is associated with methacholine airway responsiveness.

The Normative Aging Study. Am J Respir Crit Care Med.

;159:1574–9.

Parker AL, Abu-Hijleh M, McCool FD. Ratio between forced

expiratory flow between 25% and 75% of vital capacity and

FVC is a determinant of airway reactivity and sensitivity to

methacholine. Chest. 2003;124:63–9.

Parker AL, McCool FD. Pulmonary function characteristics

in patients with different patterns of methacholine airway

hyperresponsiveness. Chest. 2002;121:1818–23.

Baffi CW, Winnica DE, Holguin F. Asthma and obesity:

mechanisms and clinical implications. Asthma Res Pract.

;1:1.

Kent BD, Lane SJ. Twin epidemics: asthma and obesity. Int

Arch Allergy Immunol. 2012;157:213–4.

Robinson PD. Obesity and its impact on the respiratory

system. Paediatr Respir Rev. 2014;15:219–26.

Frey U, Latzin P, Usemann J, Maccora J, Zumsteg U, Kriemler

S. Asthma and obesity in children: current evidence and

potential systems biology approaches. Allergy. 2015;70:26–

Fitzgerald DA. The weighty issue of obesity in paediatric

respiratory medicine. Paediatr Respir Rev. 2017;24:4–7.

Gómez-Llorente MA, Romero R, Chueca N, Martínez-

Cañavate A, Gómez-Llorente C. Obesity and asthma: A

missing link. Int J Mol Sci. 2017;18:1490.

Chen Z, Salam MT, Alderete TL, Habre R, Bastain

TM, Berhane K, et al. Effects of childhood asthma on the

development of obesity among school-aged children. Am J

Respir Crit Care Med. 2017;195:1181–8.

Gluckman PD, Hanson MA, Buklijas T. A conceptual

framework for the developmental origins of health and disease.

J Dev Orig Health Dis. 2010;1:6–18.

Krauss-Etschmann S, Bush A, Bellusci S, Brusselle GG,

Dahlén SE, Dehmel S, et al. Of flies, mice and men: a

systematic approach to understanding the early life origins of

chronic lung disease. Thorax. 2013;68:380–4.

Hanson MA, Gluckman PD. Early developmental

conditioning of later health and disease: physiology or

pathophysiology? Physiol Rev. 2014;94:1027–76.

Bousquet J, Antó JM, Berkouk K, Gergen P, Antunes JP, Augé

P, et al. Developmental determinants in non-communicable

chronic diseases and ageing. Thorax. 2015;70:595–7.

Sonnenschein-Van der Voort AM, Arends RL, De Jongste

JC, Anessi-Maesano I, Arshad SH, Barros H, et al. Preterm

birth, infant weight gain, and childhood asthma risk: a

meta-analysis of 147,000 European children. J Allergy Clin

Immunol. 2014;133:1317–29.

Den Dekker HT, Sonnenschein-Van der Voort AMM, De

Jongste JC, Anessi-Maesano I, Arshad SH, Barros H, et al.

Early growth characteristics and the risk of reduced lung

function and asthma: A meta-analysis of 25,000 children. J

Allergy Clin Immunol. 2016;137:1026–35.


Enlaces refback

  • No hay ningún enlace refback.